

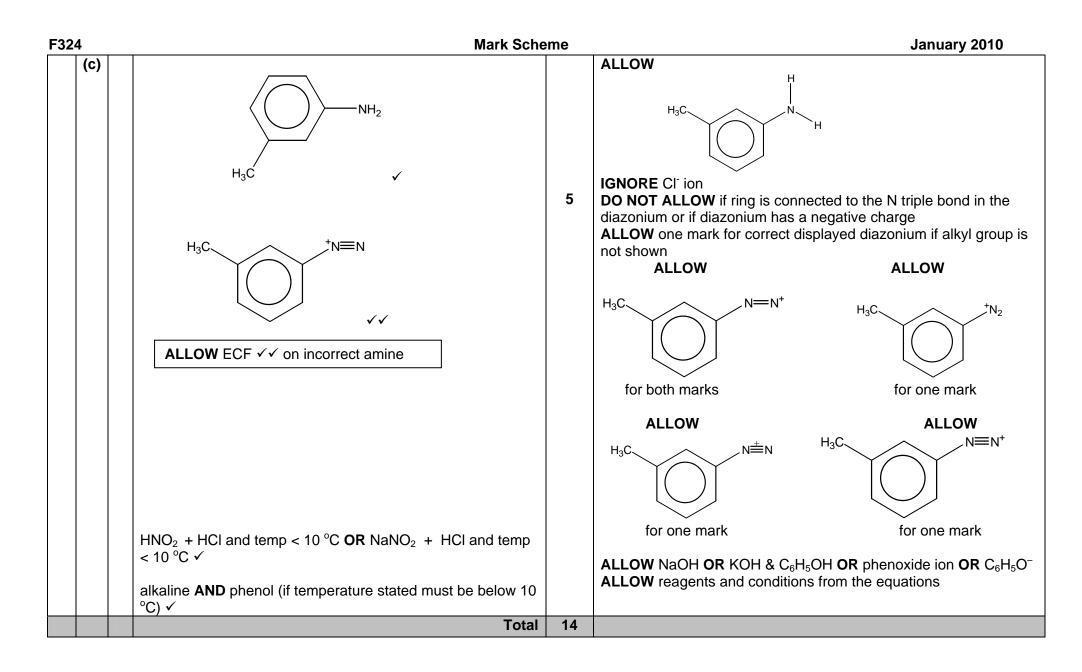
Chemistry A

Advanced GCE A2 H434

Advanced Subsidiary GCE AS H034

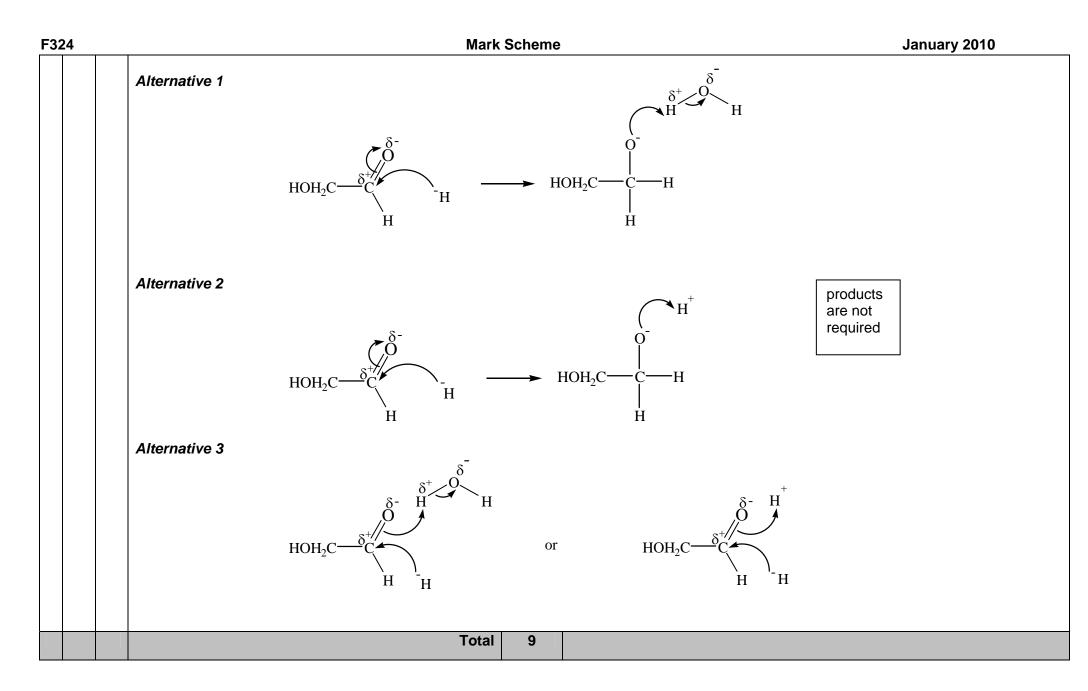
Mark Schemes for the Units

January 2010


H034/H434/MS/R/10J

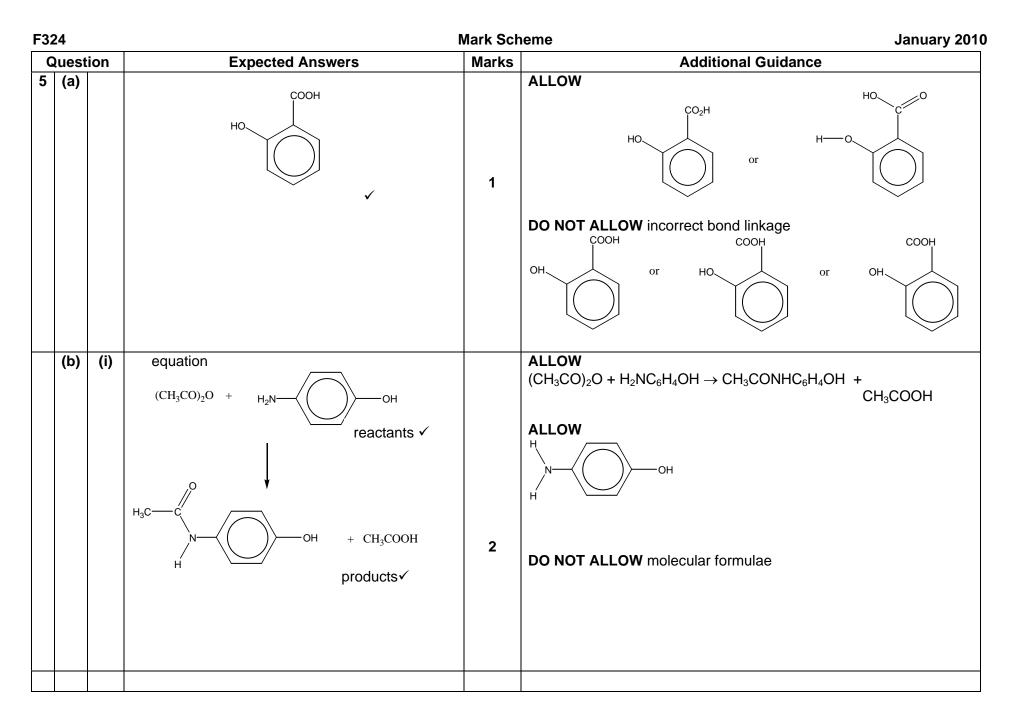
January 2010

Mark Scheme


F324 Mark F324 Rings, Polymers and Analysis

C	Quest	ion	Expected Answers	Marks	Additional Guidance
1	(a)		$\left\langle \bigcirc \right\rangle$ + Br ₂ \longrightarrow $\left\langle \bigcirc \right\rangle$ Br + HBr \checkmark	1	ALLOW $C_6H_6 + Br_2 \longrightarrow C_6H_5Br + HBr$ DO NOT ALLOW multiple substitution DO NOT ALLOW Br^+
	(b)	(i)	White precipitate OR white solid OR white crystals \checkmark	2	DO NOT ALLOW colourless DO NOT ALLOW white ppt <u>and</u> bubbles DO NOT ALLOW Br ₃ C ₆ H ₂ OH OR 2,4,6-tribromophenol OR tribromophenol
		(ii)	1,2-Dibromocyclohexane ✓	1	ALLOW 1,2dibromocyclohexane OR 1-2dibromocyclohexane OR 12dibromocyclohexane OR cyclo-1,2-dibromohexane DO NOT ALLOW dibromocyclohexane OR C ₆ H ₁₀ Br ₂ OR structures
		(iii)	MUST spell <u>delocalised/delocalized</u> or <u>localised/localized</u> correctly once in the answer to obtain all 5 marks benzene <u>electrons</u> or <u>m-bonds</u> are delocalised \checkmark phenol a <u>lone</u> or <u>non-bonded</u> pair of electrons on the oxygen or the OH group is (partially) delocalised into the ring \checkmark cyclohexene electrons are localised OR delocalised between two carbons \checkmark benzene has a lower electron density OR phenol has a higher electron density OR cyclohexene has a higher electron density \checkmark benzene cannot polarise or induce a dipole in Br ₂ OR phenol can polarise the Br ₂ OR cyclohexene can polarise Br ₂ or the Br–Br bond \checkmark	5	 ALLOW diagram to show overlap of all 6 p-orbitals for delocalisation DO NOT ALLOW benzene has delocalised structure or ring ALLOW diagram to show movement of lone pair into ring for phenol ALLOW diagram or description of overlap of 2 adjacent p-orbitals for bonding in cyclohexene DO NOT ALLOW cyclohexene has a C=C double bond IGNORE slip if cyclohexene is written as cyclohexane but π - bonding correctly described DO NOT ALLOW charge density OR electronegativity instead of electron density ALLOW Br^{δ+} OR electrophile Br⁺ as alternate to polarise

F32	-324		Mark Sch	eme	January 2010
Q	Question		Expected Answers	Marks	Additional Guidance
2	(a)	(i)	<u>silver</u> mirror ✓	1	ALLOW Ag(s) OR Ag mirror OR precipitate OR ppt OR solid ALLOW brown OR black OR grey
		(ii)	HOCH₂COOH ✓	1	ALLOW CH ₂ OHCOOH OR CH ₂ OHCO ₂ H OR HOCH ₂ CO ₂ H OR displayed OR skeletal formula OR HOCH ₂ COO ⁻ DO NOT ALLOW C ₂ H ₄ O OR 2-hydroxyethanoic acid
	(b)		$\begin{array}{rcl} HOCH_2CHO+3[O] \to HOOCCOOH &+ & H_2O \\ & reagents &\checkmark & & both \ products &\checkmark \end{array}$	2	ALLOW displayed/skeletal formula/COOHCOOH $\checkmark \checkmark$ if molecular formula used C ₂ H ₄ O ₂ + 3[O] \rightarrow C ₂ H ₂ O ₄ + H ₂ O max = 1 \checkmark
					Any correctly balanced equation for partial oxidation can score 1 mark \checkmark HOCH ₂ CHO + [O] \rightarrow HOCH ₂ COOH OR HOCH ₂ CHO + 2[O] \rightarrow OHCCOOH + H ₂ O OR HOCH ₂ CHO + [O] \rightarrow OHCCHO + H ₂ O OR HOCH ₂ CHO + 2[O] \rightarrow HOOCCHO + H ₂ O
	(c)	(i)	HOCH₂CH₂OH ✓	1	ALLOW HO(CH ₂) ₂ OH OR (CH ₂ OH) ₂ OR skeletal formula OR displayed formula DO NOT ALLOW molecular formula (C ₂ H ₆ O ₂)
		(ii)	curly arrow from H ⁻ to C ^{δ^+} \checkmark dipoles <u>and</u> curly arrow from C=O bond to O \checkmark intermediate \checkmark curly arrow from intermediate to H ^{δ^+} in H ₂ O/H ⁺ and if H ₂ O is used it must show the curly arrow from the O–H bond to the O \checkmark	4	 ALLOW curly arrow to C even if dipole missing or incorrect ALLOW maximum of 3 marks if incorrect starting material is used See page 36 for detailed mechanisms – <i>Alternative 3</i> scores all 4
			lone pairs are not essential		marks even though the intermediate is not shown



F32	24		Mark Scheme		January 2010	
G	luest	ion	Expected Answers	Marks	Additional Guidance	
3	3 (a) (i)		adsorption ✓	1	ALLOW partition OR adsorbtion IGNORE solubility OR desorption DO NOT ALLOW absorption	
		(ii)	measure how far each spot travels relative to the solvent front or calculate the $R_{\rm f}$ value \checkmark compare $R_{\rm f}$ values to those for known amino acids \checkmark	2	ALLOW compare R_f values to database ALLOW compare to known amino acids DO NOT ALLOW retention times for first mark, but the 2nd mark would be available as \checkmark ECF ALLOW alternative approach: on the same plate compare position of spots \checkmark with known amino acids \checkmark	
		(iii)	(amino acids won't separate because) similar compounds have similar $R_{\rm f}$ (values) \checkmark	1	ALLOW spots often overlap OR don't (fully) separate ALLOW they have similar R_f (values) or similar adsoptions or similar retention times ECF to a(ii)	
	(b)	(i)	$H_{2}N \longrightarrow COOH$ $R \qquad \checkmark$	1	ALLOW RCH(NH ₂)COOH any order for R, NH ₂ and COOH but C must be next to H ' <u>CH'</u> must be shown ALLOW CO_2H brackets around NH ₂ are not essential ALLOW structure	
	one H ₃ C	H_2N , H_2N , H_2C	must attempt 3Dsymbol in the "tools" to denote whether or not each chiral C is a reflection of thein the questionHCOOHH RE RE H_2N , H_2N , H_2N H_2N , H_2N , H_2N H_2N , H_2C H_3CH_2C <td co<="" td=""><td>3</td><td> each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. </td></td>	<td>3</td> <td> each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn. </td>	3	 each chiral C must have 2 — bonds, 1 wedge bond (IGNORE shading) & 1 dash bond (IGNORE wedge) check the clockwise orientation of each C. For each C start with the H and if on the: top C the H is followed by COOH it is not a mirror image. If it is a mirror image annotate using RE. bottom C the H is followed by CH₃ it is not a mirror image. If it is a mirror image annotate using RE. the four groups can be attached in any order. If the molecule is drawn upside down – clockwise becomes anti-clockwise. MUST check that the drawn structure is non-superimposable irrespective of the orientation or the way it has been drawn.
					IGNORE bond linkage for all groups	

F324	N	lark Scheme		January 2010
(c)		H	ALLOW C	
	$\begin{array}{c c} H_{3}^{+} & I \\ H_{3}^{-} & COO^{-} \\ H_{2}^{-} & H_{2}^{-} \\ H_{2}^{-} & COO^{-} \\ H_{3}^{-} & H_{3}^{-} \end{array}$,ссоон	ALLOW N	H_3^+
	CH ₃ (CH ₂) ₂	 (CH ₂) ₄	If NH₃ fully	displayed ALLOW + charge on N or H
	coo [.]	 *NH ₃	If COO full	y displayed ALLOW ⁻ charge on O only
	alanine at pH = 6.0 glutamic acid at pH = 10 \checkmark \checkmark	lysine at pH = 2.0		
(d)	valine-glycine-leucine ✓		ALLOW va	al–gly–leu
				LLOW structures
(e)	$H_2N(CH_2)_6NH_2 \checkmark$		2 ALLOW H	2NCH2CH2CH2CH2CH2CH2NH2
	HOOC(CH₂) ₈ COOH ✓		ALLOW C ALLOW ad	OOCCH ₂ CH ₂
		Total	4	

324	Ma	me January 20 ⁷	
Question	Expected Answers		Additional Guidance
4 (a)	infrared – 1 mark only shows (very broad) peak between 2500–3300 (cm ⁻¹) (due to O–H bond) ✓	3	ALLOW (very broad) peak around 3000 (cm ⁻¹) OR any stated value between 2500 and 3300 (cm ⁻¹) for O–H DO NOT ALLOW peak in range 3200–3550 (cm ⁻¹) IGNORE any reference to C=O or C–O as both are also present in an ester OR to fingerprint region
	¹³ C NMR – 2 marks $(CH_3)_2CHCH_2COOH$ has 4 peaks (due to 4 different C environments) \checkmark $(CH_3)_3CCOOH$ has 3 peaks (due to 3 different C environments) \checkmark		ALLOW ^{<math>^{13}C NMR detects the number of/different C environments' for 1 \checkmark, suitable example for the 2nd mark</math>}
(b)	 splitting pattern explains any two in terms of 'n + 1 rule' for two marks ✓✓ Explains any one peak for 1 mark ✓ singlet therefore adjacent C (if any) has no Hs 	6	 1 mark for correct ester if two splitting patterns are correctly analysed ignore the third ALLOW singlet because next or bonded to an O
	multiplet OR split into 7 therefore adjacent Cs have lots of/6 Hs		ALLOW multiplet/heptet because next to 2 CH ₃ s
	 doublet therefore adjacent C is bonded to 1H must spell one of multiplet / heptet, singlet, doublet correctly max = 2 marks 		ALLOW doublet because next to a CH
	chemical shifts		ALLOW tolerance on δ values; 3.6–3.8, 2.6–2.8 and 1.1–1.3

F324	Ма	rk Sche	cheme January				
	 two marks if any two absorptions are identified correctly ✓✓ one mark if any one absorption is identified correctly ✓ peak ~3.7 (ppm) – bonded to an O peak ~2.7 (ppm) – indicates it is next to a C=O peak ~1.2 (ppm) – bonded to other Cs OR part of a chain max = 2 marks 		(ppm) ALLOW any two gets 2 ma HC—O HC- 3.7 (ppm) 2.7 ALLOW peaks labelled on ALLOW singlet must be be doublet to CH or R for both if two chemical shifts are c	7 (ppm) the spectrum onded to O, multiple h chemical shift mark	R—CH 1.2 (ppm) t to C=O and ks		
	compound identified as (CH ₃) ₂ CHCOOCH ₃ ✓✓ 2 marks compound identified as CH ₃ COOCH(CH ₃) ₂ ✓ 1 mark						
	Total	9					

F32	24		r i i i i i i i i i i i i i i i i i i i	Mark Sch	neme	January 2010
		(ii)	$\begin{array}{c} C_{10}H_{11}NO_{3} \text{is} \\ H_{3}C \\ H_{$	1	ALLOW amide shown as either CH ₃ CONH– OR H ₃ CO CH ₃ COHN– OR H ₃ CCOHN– ALLOW ester shown as either –OCOCH ₃ OR –OOCC	CONH- OR
		(iii)	to ensure that there are no (harmful) side effects ✓	1	ALLOW impurities reduce effectiveness (of drug) OR r OR avoids litigation OR harmful OR hazardous ALLOW to ensure that the drug/active component is sa IGNORE dangerous OR nasty OR can kill OR increase	afe
	(c)		(aspirin contains) ester AND carboxylic acid ✓ (paracetamol contains) amide AND phenol ✓	2	IGNORE arene or benzene or aromatic or phenyl or m other group loses the mark ALLOW carboxyl group DO NOT ALLOW acid IGNORE arene or benzene or aromatic or phenyl or m other group loses the mark ALLOW peptide ALLOW hydroxy(I) DO NOT ALLOW hydroxide or alcohol DO NOT ALLOW amine	ethyl but any ethyl but any
	(d)	(i)	Both	3	ALLOW hydrolysis by H ⁺ (aq) or H ⁺ or HCl(aq) or HCl o	or H ₂ SO ₄ (aq)

F324 Mark Scheme January 2010 Na OR NaOH ✓ or H_2SO_4 to give hydroxybenzoic acid + ethanoic acid with aspirin \checkmark and ammonium salt of 4-aminophenol + ethanoic acid with COO⁻ (Na⁺) paracetamol ✓ H₃C **ALLOW** hydrolysis by OH⁻(aq) or NaOH(aq) and other alkali leading to hydrolysis to give carboxylate salt and phenoxide salt on the ring + ethanoate with aspirin \checkmark and 4-aminophenoxide ion + ethanoate ion with paracetamol ✓ from aspirin **ALLOW** HNO₃ (and H_2SO_4) to give NO₂ in one or more positions on the ring in both aspirin and paracetamol $\checkmark\checkmark$ ~ **DO NOT ALLOW** NH₃ but correct ammonium salts can be awarded 2 marks ECF O (Na⁺) **DO NOT ALLOW** H₂O but correct products can be awarded 2 marks ECF from paracetamol if no reagent there cannot be any marks for the products ~ If reagent selected is incorrect but would react with either aspirin or paracetamol ALLOW ✓ ECF for the correct organic product aspirin only **ALLOW** Mg, carbonates, NH₃ (ii) ALLOW alcohols (ROH) to give ester NaHCO₃ OR Na₂CO₃ OR metal oxide ✓ if no reagent there cannot be any marks for the products COO⁻ (Na⁺) H₃C 2 H₂C If reagent selected is incorrect but would react with BOTH aspirin ~ and paracetamol **ALLOW** < ECF for the correct organic product ALLOW Br₂ water (iii) paracetamol only

F324	Mark Scheme	January 2010
$Br_2 \checkmark$ $H_3C - C \qquad O \qquad OH$ $H_3C - C \qquad H_3C - OH$ $H_3C - C \qquad H_3C - OH$	 ALLOW one or more Br at any position on th DO NOT ALLOW Br substitution of OH ALLOW acyl chloride or acid anhydride and of ALLOW FeCl₃ to form a purple <u>complex ion</u> (ALLOW diazonium and structure showing at one of the Hs in the ring if no reagent there cannot be any marks for the If reagent selected is incorrect but would read and paracetamol ALLOW ✓ ECF for the corr 	corresponding ester structure not required) zo group substituting ne products ct with BOTH aspirin
Tota	al 14	

Grade Thresholds

Advanced GCE Chemistry A (H034/H434) January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
F321	Raw	60	46	40	35	30	25	0
	UMS	90	72	63	54	45	36	0
F322	Raw	100	77	68	59	51	43	0
	UMS	150	120	105	90	75	60	0
F324	Raw	60	43	38	33	29	25	0
	UMS	90	72	63	54	45	36	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	В	С	D	E	U
H034	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
H034	12.9	37.5	62.7	83.1	96.2	100	1415

1415 candidates aggregated this series.

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums/index.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

